
icpc Europe

Contests

The 2023 ICPC

Northwestern Europe Regional Contest

Official Problem Set

2023

2024

europe

icpc.foundation

icpc global sponsor

programming tools

icpc diamond

multi-regional sponsor

icpc europe

regional sponsor icpc sponsor

Northwestern Europe
Regional Contest 2023

NWERC 2023

November 26, 2023

Problems
A Arranging Adapters
B Brickwork
C Chair Dance
D Date Picker
E Exponentiation
F Fixing Fractions
G Galaxy Quest
H Higher Arithmetic
I Isolated Island
J Jogging Tour
K Klompendans
L Lateral Damage

Copyright © 2023 by the NWERC 2023 jury. This work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

NWERC 2023
Problem A

Arranging Adapters
Time limit: 4 seconds

It is the day before the NWERC and you and your team are on the train towards Delft. The
journey is long and boring but you came up with a good idea: “Let’s do some training”.

– silence –

You take your laptop out and try to plug it in when you notice that the only socket is already in
use. Your friends smirk and reply: “No socket for you, no training for us”. Their smirks quickly
fade as you pull out a power strip, unplug the charger from the socket, and plug it back into the
power strip. Now, there is enough space for your charger as well.

Figure A.1: Illustration of Sample Input 2. The first six chargers can be plugged in as
shown. Note that this is not the only possible solution. However, it can be shown that it is
impossible to plug in all seven chargers.

However, as soon as more sockets are available, your friends suddenly take out more devices
that need to be charged. You realize that you will not get them to train like this, so you decide to
trick them into solving a problem instead.

Your power strip comprises a row of s sockets, and each socket is 3 cm in diameter. Furthermore,
as you examine the chargers, you notice that they all have integer lengths. The plug of each
charger is always on one of the two ends, and each charger can only be used in two orientations.
Chargers cannot overlap, but can touch, and can extend beyond the end of the power strip as
long as they are plugged in to a socket. Now you challenge them to charge as many devices as
possible. This is visualized in Figure A.1. Hoping that this allows them to avoid the training,
your friends agree to write a program to solve this.

Input

The input consists of:
• One line with two integers n and s (1 ≤ n ≤ 2 · 105, 1 ≤ s ≤ 109), the number of

chargers you have and the number of sockets on the power strip.
• One line with n integers w (3 ≤ w ≤ 109), the width of each charger in centimetres.

Note that you are allowed to rotate chargers by 180◦ before plugging them in.

NWERC 2023 Problem A: Arranging Adapters 1

NWERC 2023
Output

Output the maximum number of chargers you can plug into the power strip at the same time.

Sample Input 1 Sample Output 1

5 7
7 4 4 5 8

5

Sample Input 2 Sample Output 2

8 9
7 4 3 6 4 8 5 6

6

NWERC 2023 Problem A: Arranging Adapters 2

NWERC 2023
Problem B
Brickwork

Time limit: 7 seconds

Bob the Builder is tired of building tiny houses and paving narrow roads, and he strives for
something bigger. The new job given to him by a very eccentric client is exactly what he needs:
He is tasked with building a wall of a certain width that is infinitely high! His client assured him
that he does not need to worry about the building material, and that an infinite supply of various
kinds of bricks has already been ordered for him. Of course, building a stable wall takes very
careful planning, especially if it is supposed to be infinitely high. In particular, a wall is only
stable if no two gaps between bricks in consecutive rows end up directly above each other, as
shown in Figure B.1. Bob knows from his long-time experience that if it is possible to build
such a wall, then it can be done by alternating just two row configurations.

Figure B.1: On the left, we see an unstable wall using the brick types of Sample Input 1.
On the right, we see a stable wall using the same brick types. Note that even though only
two rows of the wall are shown, it is possible to build an infinitely high wall by repeating
these two row configurations.

Bob is terribly excited about the new job and quickly goes to work. Given the types of bricks
available, is it possible to build a stable wall of width exactly w and infinite height? If yes, how
should Bob build it using only two alternating row configurations?

Input

The input consists of:
• One line with two integers n and w (1 ≤ n,w ≤ 3 · 105), the number of brick types and

the width of the wall.
• One line with n integers b (1 ≤ b ≤ w), the widths of the brick types.

Note that Bob has an infinite supply of all brick types.

Output

If it is possible to build a wall, then output “possible”. Otherwise, output “impossible”.

If a wall can be built, provide two row configurations that can be used in an alternating fashion.
For both rows, first output the number of bricks needed for that row, followed by the lengths of
the bricks in the order you want to use them. Your solution is considered valid if alternating the
two rows infinitely would result in a stable wall.

If there are multiple valid solutions, you may output any one of them.

NWERC 2023 Problem B: Brickwork 3

NWERC 2023
Sample Input 1 Sample Output 1

4 12
3 2 7 2

possible
5
2 2 3 2 3
3
3 2 7

Sample Input 2 Sample Output 2

3 11
6 7 8

impossible

NWERC 2023 Problem B: Brickwork 4

NWERC 2023
Problem C
Chair Dance

Time limit: 8 seconds

A family playing Musical Chairs.
CC BY-SA 3.0 by Artaxerxes on Wikimedia Commons

In a deterministic version of Musical Chairs1, there are n chairs
placed in a circle. The chairs are numbered from 1 to n in clock-
wise order. Initially, the ith player sits on the ith chair. During the
game, the game master gives commands to all players at once.

The first type of command tells each player to move x chairs
farther in clockwise order, so they must move from chair i to
chair i+ x.

The second type of command tells each player to move from
chair i to chair i · x. Both these calculations are done modulo n, where a remainder of 0
corresponds to chair n.

If two or more people want to move to the same chair, then the player needing to travel the
least in clockwise direction to reach the chair gets to take the seat, and the other players trying
to reach the same chair are out of the game. This is illustrated in Figure C.1, where the larger
circles represent the chairs and their numbers are written on their inside. The smaller circles
represent the players. The next command (* 10) tells player 10 (now on seat 11) and player 4
(now on seat 5) to move to chair 2. However, since player 10 needs to travel less, this player
gets to take the seat. Note that the other 10 players will also move to some other chairs, but this
is omitted from the figure for the sake of readability.

1

2

3

4

5
6

7

8

9

10

11
12

12

1

2

3

5
6

7

8

9

11
10

4

Figure C.1: Illustration of Sample Input 1 at the fourth command, where players 4 and 10
need to move to chair 2. Because player 10 needs to travel less in clockwise direction, this
player gets to take the seat.

The jury wasted most of their free time designing this game and now need to go back to work.
Fortunately, the game is deterministic, so you can play the game without the help of the jury.

1You do not need to know the original game, but you can try to play it after the contest is over.

NWERC 2023 Problem C: Chair Dance 5

https://commons.wikimedia.org/wiki/File:Musical_chairs_Lawn_Jam_Our_Community_Place_Harrisonburg_VA_June_2008.jpg

NWERC 2023
Input

The input consists of:
• One line with two integers n and q (2 ≤ n, q ≤ 5 · 105), the number of chairs and the

number of commands.
• q lines, each containing one of three command types:

– “+ x”: The player on chair i moves to chair i+ x.
– “* x”: The player on chair i moves to chair i · x.
– “? x”: Tell us the number of the player on chair x.

All of the values x will satisfy 1 ≤ x ≤ n.

Output

For each command of type ‘?’, output the number of the player on the requested chair. If the
chair is currently empty, output −1 instead.

Sample Input 1 Sample Output 1

12 10
? 12
+ 1
? 12

* 10
? 2

* 5
? 2

* 6
? 1
? 12

12
11
10
6
-1
11

Sample Input 2 Sample Output 2

32 11

* 6
? 8

* 6
+ 31

* 28
? 4
+ 1

* 2
+ 1

* 3
? 1

28
32
32

NWERC 2023 Problem C: Chair Dance 6

NWERC 2023
Problem D
Date Picker

Time limit: 1 second

A filled agenda.

The NWERC is coming up and your agenda is filling up with
meetings. One of your teammates wants to plan a meeting, and
asks for your input. However, instead of asking you for your exact
agenda, you have to fill out two separate polls: one for indicating
which days you are available, and one for the hours!

As a computer scientist, you plan your meetings only on whole
hours and each meeting takes an integer number of hours. There-
fore, your agenda can be modelled as a matrix of 7 rows (days),
and 24 columns (hours). Each cell in this matrix is either ‘.’ or ‘x’, meaning that hour of that
day you are either free or have a meeting, respectively.

You have to pick at least d days in the first poll and h hours in the second poll, and we assume
the meeting will take place on any of your picked hour/day combinations with equal probability.
What is the probability that you can attend the meeting if you fill in the polls optimally?

Input

The input consists of:
• 7 lines with 24 characters, each character being either ‘.’ or ‘x’, with ‘.’ indicating the

time slots you are available.
• One line with two integers d and h (1 ≤ d ≤ 7, 1 ≤ h ≤ 24), the minimum number of

days and hours you have to fill in.

Output

Output the probability that you are available at the chosen meeting time.

Your answer should have an absolute or relative error of at most 10−6.

Sample Input 1 Sample Output 1

xxxxxx..xx..xxxxxxxxxxxx
xxxxxxxxxxxxx....xxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxx..xx..xxxxxxxxxxxx
xxxxxxxxxxxxx...x..xxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
2 5

0.8

NWERC 2023 Problem D: Date Picker 7

NWERC 2023
Sample Input 2 Sample Output 2

xxxxxxxxx.....x...xxxxxx
xxxxxxxx..x...x...xxxxxx
xxxxxxxx......x...x.xxxx
xxxxxxxx...xxxxxxxxxxxxx
xxxxxxxx...xxxxxxxxxxxxx
xxxxxxxx...xxxxxxxx.xxxx
......xxxxxxxxxxxxxxxxxx
3 8

0.958333333333333

NWERC 2023 Problem D: Date Picker 8

NWERC 2023
Problem E

Exponentiation
Time limit: 3 seconds

Image by callmetak on Freepik

In her spare time, Zoe develops an online calculator. Unfortunately,
the calculator was targeted by a denial-of-service attack last week.
The attacker created a lot of integer variables, exponentiated them
with each other, and tried to do a bunch of comparisons. The huge
integers were too much for the server to handle, so it crashed. Before
Zoe fixes the issue, she decides to actually perform the calculations
that the attacker requested.

There are n integer variables x1, x2, . . . , xn. At the start, each variable is set to 2023. You have
to perform m instructions of the following two types:

• Operations, of the form “! i j”, where i ̸= j. This means that xi gets set to x
xj

i .
• Queries, of the form “? i j”, where i ̸= j. This means that you should print ‘>’ if xi is

greater than xj , ‘=’ if xi is equal to xj , and ‘<’ if xi is smaller than xj .
Consider the first sample. After the 5 operations, the values of the variables are:

x1 =
(
20232023

)20232023
, x2 =

(
20232023

2023
)2023

, x3 = 2023, x4 = 20232023.

Input

The input consists of:
• One line with two integers n and m (2 ≤ n ≤ 1000, 1 ≤ m ≤ 1000), the number of

variables and the number of instructions.
• m lines, each containing a character c (either ‘!’ or ‘?’) and two integers i and j

(1 ≤ i, j ≤ n, i ̸= j), describing the instructions.

Output

For every query in the input, output its answer.

Sample Input 1 Sample Output 1

4 8
! 1 4
! 2 1
! 4 3
! 1 4
! 2 3
? 3 4
? 2 4
? 2 1

<
>
=

NWERC 2023 Problem E: Exponentiation 9

https://www.freepik.com/free-vector/year-2023-logo-fireworks-with-text-space-vector-illustration-celebrating-new-year_29660812.htm

NWERC 2023
Sample Input 2 Sample Output 2

4 9
! 2 4
! 1 2
? 3 1
? 1 2
! 2 3
? 1 2
! 1 3
! 3 2
? 1 3

<
>
>
<

NWERC 2023 Problem E: Exponentiation 10

NWERC 2023
Problem F

Fixing Fractions
Time limit: 5 seconds

Source: The Internet™.

Maths is hard.[citation needed] But it could be easier! And the inter-
net™ has found some excellent ways to make it easier. Take a
look at the following true equations:

log(1) + log(2) + log(3) = log(1 + 2 + 3)

163
326

=
1

2
.

Following the patterns, we come to the conclusion that the following equation should also be
true:

123
234

=
1

2
.

However, this is actually wrong in boring old standard maths. Therefore, we define a new kind
of funky maths where it is allowed to cancel out digits on the left side of the equality sign. This
surely will make everyone’s life easier. Except yours, since you have to evaluate if two given
fractions are equal in our new funky maths.

Input

The input consists of:
• One line with four integers a, b, c, and d (1 ≤ a, b, c, d < 1018), describing the two

fractions a
b

and c
d
.

Output

If there exist integers a′ and b′ obtained from a and b by cancelling out the same digits and with
a′

b′
= c

d
in standard mathematics, output “possible”, followed by a′ and b′. Otherwise, output

“impossible”.

If there are multiple valid solutions, you may output any one of them.

Note that neither a′ nor b′ is allowed to contain leading zeroes after cancelling digits.

Sample Input 1 Sample Output 1

163 326 1 2 possible
1 2

Sample Input 2 Sample Output 2

871 1261 13 39 possible
87 261

Sample Input 3 Sample Output 3

123 267 12339 23679 impossible

NWERC 2023 Problem F: Fixing Fractions 11

This page is intentionally left blank.

NWERC 2023
Problem G
Galaxy Quest

Time limit: 5 seconds

You are travelling through the galaxy in your spaceship. There are n planets in the galaxy,
numbered from 1 to n and modelled as points in 3-dimensional space.

You can travel between these planets along m space highways, where each highway connects
two planets along the straight line between them. Your engine can accelerate (or decelerate) at
1m/s2, while using fuel at a rate of 1 litre per second. There is no limit to how fast you can go,
but you must always come to a complete standstill whenever you arrive at the planet at the end
of a highway.

It is possible for a highway to pass through planets other than the ones it connects. However, as
your spaceship is equipped with special hyperspace technology, it simply phases through these
obstacles without any need of stopping. Another consequence of using this technology is that it
is impossible to jump from one highway to another midway through: highways must always be
travelled in full.

Figure G.1: Illustration of Sample Input 1, showing highways in blue, and a route from
planet 1 to planet 3. The green start of a highway indicates acceleration, and the red end
indicates deceleration.

You need to fly several missions, in which you start at your home planet (with number 1) and
need to reach a given target planet within a given time limit. For each mission, determine
whether it can be completed, and if so, find the least amount of fuel required to do so. As an
example, Figure G.1 shows the optimal route for the second mission of the first sample.

Input

The input consists of:
• One line with three integers n, m, and q (1 ≤ n,m, q ≤ 105, n ≥ 2), where n is the

number of planets, m is the number of space highways, and q is the number of missions.
• n lines, each with three integers xi, yi, and zi (|xi| , |yi| , |zi| ≤ 103, 1 ≤ i ≤ n), the

coordinates of planet i.
• m lines, each with two integers a and b (1 ≤ a, b ≤ n, a ̸= b), describing a space highway

that connects planets a and b. It can be traversed in either direction.
• q lines, each with two integers c and t (2 ≤ c ≤ n, 1 ≤ t ≤ 103), the target planet and

time limit for each mission.
The n planets are in distinct locations. Their coordinates are given in metres, and the time limits
of the missions are given in seconds. No two highways connect the same pair of planets. For
each mission, both the absolute and relative differences between the given time limit and the
shortest possible completion time are at least 10−6.

NWERC 2023 Problem G: Galaxy Quest 13

NWERC 2023
Output

For each mission, output the least amount of fuel in litres required to reach the target location
within the time limit. If the target location cannot be reached within the time limit, output
“impossible”.

Your answers should have an absolute or relative error of at most 10−6.

Sample Input 1 Sample Output 1

4 4 3
-30 0 0
0 0 0
50 0 0
-30 10 0
1 2
2 3
3 4
4 1
2 10
3 25
4 7

impossible
19.0538441903
4.0000000000

Sample Input 2 Sample Output 2

4 2 5
-3 0 2
7 -9 -3
4 4 -6
8 -1 8
1 2
2 3
2 1000
2 100
3 1000
3 100
4 1000

0.0287058122
0.2874671888
0.1120998619
1.1272896971
impossible

NWERC 2023 Problem G: Galaxy Quest 14

NWERC 2023
Problem H

Higher Arithmetic
Time limit: 4 seconds

Captchas are getting more and more elaborate. It started with
doing simple calculations like 7 + 2, and now, it has evolved
into having to distinguish chihuahuas from double chocolate chip
muffins.

To combat the rise of smarter bots, the Internet Captcha Production
Company (ICPC) has outdone itself this time: given a distorted
image containing many integers, find the maximum value that can
be expressed using each of the given integers exactly once, using
addition, multiplication, and arbitrary parentheses.

After unsuccessfully trying to solve such a captcha for an hour
straight, Katrijn is terribly frustrated. She decides to write a
program that outputs a valid arithmetic expression with maximal
value.

Input

The input consists of:
• One line with an integer n (1 ≤ n ≤ 105), the number of integers in the captcha.
• One line with n integers a (1 ≤ a ≤ 106), the integers in the captcha.

Output

Output a valid arithmetic expression with maximal value, where each integer from the input list
is used exactly once. The usual order of operations applies. The output expression may use at
most 106 characters and must not contain any spaces. Such an expression exists for any possible
input.

If there are multiple valid solutions, you may output any one of them.

Sample Input 1 Sample Output 1

4
1 2 3 4

3*((1+2)*4)

Sample Input 2 Sample Output 2

3
13 37 1

(1+13)*37

Sample Input 3 Sample Output 3

4
1 1 1 1

((1+1)*(1+1))

NWERC 2023 Problem H: Higher Arithmetic 15

This page is intentionally left blank.

NWERC 2023
Problem I

Isolated Island
Time limit: 8 seconds

On a small island far far away, a handful of old men live isolated from the rest of the world.
The entire island is divided into plots of land by fences, and each old man owns a single plot of
land bounded by fences on all sides. (The region outside all fences is the ocean.) Each of the
inhabitants needs fish to survive and the only place where they can fish is the ocean surrounding
them. Since not every plot of land is connected to the ocean, some of the men might need to
pass through the land of others before being able to fish. The men can cross a single fence at a
time, but cannot go through fenceposts or locations where fences intersect.

Unfortunately, the old men are greedy. They demand one fish each time a person wants to enter
their land. Since they do not want to lose too much fish to the others, every old man chooses a
route that minimizes the number of fish he has to pay to get to the ocean.

Over the years, this has led to rivalry between the old men. Each man hates all other men who
have to pay less than him to reach the ocean. Two men only like each other if they have to pay
the same amount of fish to reach the ocean.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−3

−2

−1

1

2

3

1 2

1

2

Figure I.1: Illustrations of the first three Sample Inputs. In Sample Input 1, every man has
direct access to the sea, so they all like each other. In Sample Input 2, there does not exist a
pair of neighbours who like each other, because the man living in the middle needs to pay
one fish, whereas all of his neighbours do not have to pay any fish to reach the ocean. In
Sample Input 3, there are six men, some of whom are friendly neighbours.

The natural question which now occurs is: are there some old men on this island who are
neighbours (owning land on opposite sides of a single fence) and like each other? See Figure I.1
for two islands with opposite answers to this question.

Input

The input consists of:
• One line with an integer n (3 ≤ n ≤ 1000), the number of fences.
• n lines, each with four integers x1, y1, x2, and y2 (|x1| , |y1| , |x2| , |y2| ≤ 106, (x1, y1) ̸=
(x2, y2)), indicating a straight fence between fenceposts at (x1, y1) and (x2, y2).

Note that fences may intersect internally, and that three or more fences may intersect in the same
location.

It is guaranteed that any two fences intersect only in at most one point. Furthermore, after
crossing a single fence, one always ends up in a different region. All regions together form a
single island, where any region can be reached from any other region.

NWERC 2023 Problem I: Isolated Island 17

NWERC 2023
Output

If there exists a pair of neighbours who like each other, then output “yes”. Otherwise, output
“no”.

Sample Input 1 Sample Output 1

6
-3 -3 0 3
-3 -3 0 0
-3 -3 3 -3
0 0 0 3
0 0 3 -3
0 3 3 -3

yes

Sample Input 2 Sample Output 2

6
-6 -3 0 3
0 3 6 -3
6 -3 -6 -3
-3 0 3 0
3 0 0 -3
0 -3 -3 0

no

Sample Input 3 Sample Output 3

8
0 1 2 1
2 2 0 0
1 2 1 0
1 0 2 1
0 0 2 0
1 2 2 2
0 1 0 0
2 2 2 0

yes

Sample Input 4 Sample Output 4

4
0 0 1 0
1 0 1 1
1 1 0 1
0 1 0 0

no

NWERC 2023 Problem I: Isolated Island 18

NWERC 2023
Problem J
Jogging Tour

Time limit: 8 seconds

You may know that in the 17th century, a group of Dutchmen founded a settlement called New
Amsterdam on Manhattan Island that later went on to become New York City. Less well-known
is the story of another group of Dutchmen that also moved over to America and founded a city
called New Delft. Like its bigger counterpart, New Delft has been built on a grid made up of two
sets of parallel streets that meet each other at a perpendicular angle.

Some stroopwafel bakeries have already been built in New Delft, but none of the streets have
been constructed. Your task is to lay out the grid of streets. For this, you need to decide on an
orientation for the grid so that there are two orthogonal directions for the two types of streets.
Once the orientation is fixed, you may build arbitrary streets, as long as each of them has one of
the two given directions, as shown in Figure J.1. Each street can be traversed in either direction.

Figure J.1: Illustration of Sample Input 2 with a possible street layout that gives the shortest
possible path that visits all bakeries in some order.

The street layout should be created in an optimal way for the annual Stroopwafel Run. This is an
event in which a group of runners visits all the bakeries in some order of their choosing, and
they may start and end their run at any point in the city. Your task is to come up with a grid
layout that makes this shortest path as short as possible.

Input

The input consists of:
• One line with an integer n (2 ≤ n ≤ 12), the number of stroopwafel bakeries in New

Delft.
• n lines, each with two integers x and y (0 ≤ x, y ≤ 106), the coordinates of one of the

bakeries.
The bakeries are at distinct coordinates, so for any 1 ≤ i, j ≤ n with i ̸= j, it holds that
(xi, yi) ̸= (xj, yj).

NWERC 2023 Problem J: Jogging Tour 19

NWERC 2023
Output

Output the length of the shortest possible path that visits all bakeries in some order, assuming an
optimal grid layout.

Your answer should have an absolute or relative error of at most 10−6.

Sample Input 1 Sample Output 1

3
0 1
1 2
3 0

4.24264068712

Sample Input 2 Sample Output 2

4
1 4
6 0
5 3
2 6

11.1566387517

NWERC 2023 Problem J: Jogging Tour 20

NWERC 2023
Problem K

Klompendans
Time limit: 5 seconds

In traditional Dutch clog dancing, you as the dancer need to follow a very specific sequence of
movements. The dance takes place on a square grid of square tiles, and at the start of the dance
you stand on the top left corner tile of the grid. You then alternate between two types of dance
move, moving from tile to tile in the grid for as long as you want. Your first move may be of
either kind, but after that you need to strictly alternate between the two kinds of moves.

Both moves are similar to knight moves in chess: in the first type of move, you go from your
current square to a square that is a tiles away along one axis of the grid and b tiles away along
the other axis. Similarly, in the second type of move, you need to move c and d tiles along the
respective axes. As you can freely swap the two axes and choose the movement direction along
each axis, there can be up to 8 ways of performing a given type of move. Figure K.1 shows an
example dance routine with (a, b) = (1, 2) and (c, d) = (2, 3).

Figure K.1: Illustration of Sample Input 3, showing a dance that begins in the top left corner
of a 4× 4 grid and ends in the bottom left corner, visiting the blue squares along the way.
There are 13 reachable squares in total. The three squares highlighted in red cannot be part
of any dance performance.

Starting on the top left corner tile, how many different tiles could you reach while doing a clog
dance? It is not allowed to step outside of the grid and you do not count tiles that you are simply
stepping over while doing a move. Note that you need to count all tiles that can be reached
during some performance of the dance, but not necessarily during the same one.

Input

The input consists of:
• One line with an integer n (3 ≤ n ≤ 500), the side length of the square.
• One line with two integers a and b (1 ≤ a, b < n), describing the first dance move.
• One line with two integers c and d (1 ≤ c, d < n), describing the second dance move.

NWERC 2023 Problem K: Klompendans 21

NWERC 2023
Output

Output the number of tiles you can reach using these dance moves.

Sample Input 1 Sample Output 1

3
2 1
2 2

6

Sample Input 2 Sample Output 2

8
1 2
1 2

64

Sample Input 3 Sample Output 3

4
1 2
2 3

13

Sample Input 4 Sample Output 4

5
1 2
2 3

25

Sample Input 5 Sample Output 5

10
3 3
4 4

50

NWERC 2023 Problem K: Klompendans 22

NWERC 2023
Problem L

Lateral Damage
Time limit: 2 seconds

The original Battleships game,
before the upgrade to a 100 × 100 grid.

CC BY-NC 3.0 by Pavel Ševela on Wikimedia Commons

You are playing Battleships in a large ocean with large ships.
More precisely, there is a large square grid of size at most
100× 100 and inside it are up to 10 of the largest type of ship in
Battleships – the aircraft carrier – which has a length of five tiles,
placed either horizontally or vertically. The ships do not overlap,
but they are allowed to be adjacent to each other. See Figure L.1
for an example.

Unfortunately, your opponent appears to bend the rules to their
liking. It looks like they do not always determine the placement
of their ships before you start shooting. You are not impressed
by their attempt at cheating, and decide to try and win the game
anyway.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

Figure L.1: Illustration of Sample Interaction 1 after the first four shots were fired.

Your goal is to locate and sink all your opponent’s aircraft carriers in at most 2500 shots, that is,
you must hit each of the five tiles of all their ships.

Interaction

This is an interactive problem. Your submission will be run against an interactor, which reads
from the standard output of your submission and writes to the standard input of your submission.
This interaction needs to follow a specific protocol:

The interactor first sends one line with two integers n and k (5 ≤ n ≤ 100, 1 ≤ k ≤ 10), the
size of the grid and the number of ships. It is guaranteed that it is possible to place k aircraft
carriers in the grid without overlap.

Then, your program needs to start firing shots. Each shot is fired by printing one line of the form
“x y” (1 ≤ x, y ≤ n), indicating you shoot at position (x, y). The interactor will respond with
“hit” if the shot was a hit, “sunk” if the shot caused an aircraft carrier to sink, and “miss”
otherwise. If you have shot the same location before, the response will be “miss”.

Once you sink the last aircraft carrier, the interaction will stop and your program must exit.

The interactor is adaptive: the positions of the ships may be determined during the interaction,
and may depend on where you decide to shoot.

NWERC 2023 Problem L: Lateral Damage 23

https://commons.wikimedia.org/wiki/File:Hra_n%C3%A1mo%C5%99n%C3%AD_bitva_(1).jpg

NWERC 2023
Make sure you flush the buffer after each write.

A testing tool is provided to help you develop your solution.

Firing more than 2500 shots will result in a wrong answer.

Read Sample Interaction 1 Write

7 2

6 1

miss

6 3

hit

7 3

miss

5 3

hit

4 3

hit

3 3

hit

2 3

hit

1 3

sunk

6 7

miss

6 7

miss

6 2

hit

6 2

miss

6 4

hit

6 5

hit

6 6

sunk

NWERC 2023 Problem L: Lateral Damage 24

	Arranging Adapters
	Brickwork
	Chair Dance
	Date Picker
	Exponentiation
	Fixing Fractions
	Galaxy Quest
	Higher Arithmetic
	Isolated Island
	Jogging Tour
	Klompendans
	Lateral Damage

