NWERC 2023

Solutions presentation

The NWERC 2023 jury
November 26, 2023

The NWERC 2023 Jury

- Doan-Dai Nguyen

École normale supérieure Université Paris Sciences \& Lettres

- Jeroen Bransen

Chordify

- Maarten Sijm

CHipCie (Delft University of Technology)

- Michael Zündorf

Karlsruhe Institute of Technology

- Nils Gustafsson

KTH Royal Institute of Technology

- Paul Wild

FAU Erlangen-Nürnberg

- Ragnar Groot Koerkamp ETH Zurich
- Reinier Schmiermann

Utrecht University

- Wendy Yi

Karlsruhe Institute of Technology

Big thanks to our proofreaders and test solvers

- Dany Sluijk

Delft University of Technology

- Mees de Vries

BAPC Jury

- Oleksandr Kulkov

ETH Zurich

- Pavel Kunyavskiy

JetBrains, Amsterdam

- Robin Lee

Google

- Vitaly Aksenov

City, University of London

K: Klompendans

Problem Author: Maarten Sijm

Problem

Find all reachable squares on an $n \times n$ grid that can be reached starting from the corner while alternating between knight moves of type (a, b) and (c, d).

K: Klompendans

Problem Author: Maarten Sijm

Problem

Find all reachable squares on an $n \times n$ grid that can be reached starting from the corner while alternating between knight moves of type (a, b) and (c, d).

Solution

- Create two copies of the grid, one for "the last move was of type (a, b) " and one for "the last move was of type (c, d).
- Starting from the two top left corners, run BFS or DFS to find the reachable states. After each move, transfer over to the other grid.
- Count all cells that are reachable in at least one of the grids.
- Total time: $\mathcal{O}\left(n^{2}\right)$.

K: Klompendans

Problem Author: Maarten Sijm

Problem

Find all reachable squares on an $n \times n$ grid that can be reached starting from the corner while alternating between knight moves of type (a, b) and (c, d).

Solution

- Create two copies of the grid, one for "the last move was of type (a, b) " and one for "the last move was of type (c, d).
- Starting from the two top left corners, run BFS or DFS to find the reachable states. After each move, transfer over to the other grid.
- Count all cells that are reachable in at least one of the grids.
- Total time: $\mathcal{O}\left(n^{2}\right)$.

Statistics: 195 submissions, 120 accepted, 19 unknown

K: Klompendans

K: Klompendans

Problem Author: Maarten Sijm

K: Klompendans

Problem Author: Maarten Sijm

пй

Problem Author: Jeroen Bransen

Problem

Given your availability for every hour in a week, pick at least $1 \leq d \leq 7$ days in the first poll and at least $1 \leq h \leq 24$ hours in the second poll to get the highest probability that you will be available.

Fun fact: based on a true story, while the jury was planning their first meeting!

Problem Author: Jeroen Bransen

Problem

Given your availability for every hour in a week, pick at least $1 \leq d \leq 7$ days in the first poll and at least $1 \leq h \leq 24$ hours in the second poll to get the highest probability that you will be available.
Fun fact: based on a true story, while the jury was planning their first meeting!

Observation

Selecting more than d days/ h hours is never more efficient than selecting exactly d days $/ h$ hours.

Problem Author: Jeroen Bransen

Problem

Given your availability for every hour in a week, pick at least $1 \leq d \leq 7$ days in the first poll and at least $1 \leq h \leq 24$ hours in the second poll to get the highest probability that you will be available.
Fun fact: based on a true story, while the jury was planning their first meeting!

Observation

Selecting more than d days/ h hours is never more efficient than selecting exactly d days $/ h$ hours.

Brute-force solution

For every combination of (a subset of d days) and (a subset of h hours), calculate the number of free timeslots, take the maximum, and divide by $d \cdot h$.

Problem Author: Jeroen Bransen

Problem

Given your availability for every hour in a week, pick at least $1 \leq d \leq 7$ days in the first poll and at least $1 \leq h \leq 24$ hours in the second poll to get the highest probability that you will be available.
Fun fact: based on a true story, while the jury was planning their first meeting!

Observation

Selecting more than d days $/ h$ hours is never more efficient than selecting exactly d days $/ h$ hours.

Brute-force solution

For every combination of (a subset of d days) and (a subset of h hours), calculate the number of free timeslots, take the maximum, and divide by $d \cdot h$. Too slow: in the worst case where $d=3$ and $h=12$, this requires checking $\binom{7}{3} \cdot\binom{24}{12} \cdot 3 \cdot 12 \approx 3 \cdot 10^{9}$ timeslots.

Problem Author: Jeroen Bransen

Problem

Given your availability for every hour in a week, pick at least $1 \leq d \leq 7$ days in the first poll and at least $1 \leq h \leq 24$ hours in the second poll to get the highest probability that you will be available.
Fun fact: based on a true story, while the jury was planning their first meeting!

Observation

Selecting more than d days $/ h$ hours is never more efficient than selecting exactly d days $/ h$ hours.

Brute-force solution

For every combination of (a subset of d days) and (a subset of h hours), calculate the number of free timeslots, take the maximum, and divide by $d \cdot h$. Too slow: in the worst case where $d=3$ and $h=12$, this requires checking $\binom{7}{3} \cdot\binom{24}{12} \cdot 3 \cdot 12 \approx 3 \cdot 10^{9}$ timeslots. (Unless you write very efficient $\mathrm{C}++$)

Problem Author: Jeroen Bransen

Problem

Given your availability for every hour in a week, pick at least $1 \leq d \leq 7$ days in the first poll and at least $1 \leq h \leq 24$ hours in the second poll to get the highest probability that you will be available.
Fun fact: based on a true story, while the jury was planning their first meeting!

Greedy Solution

To avoid having to check all combinations, only check all combinations of d days.

Problem Author: Jeroen Bransen

Problem
Given your availability for every hour in a week, pick at least $1 \leq d \leq 7$ days in the first poll and at least $1 \leq h \leq 24$ hours in the second poll to get the highest probability that you will be available.
Fun fact: based on a true story, while the jury was planning their first meeting!

Greedy Solution

To avoid having to check all combinations, only check all combinations of d days.
For every combination of d days:

- For every hour, count the number of cells with ' \quad.
- Sort this list and select the h hours with the most open timeslots.
- Calculate the number of free timeslots, take the maximum, and divide by d. h.

Problem Author: Jeroen Bransen

Problem
Given your availability for every hour in a week, pick at least $1 \leq d \leq 7$ days in the first poll and at least $1 \leq h \leq 24$ hours in the second poll to get the highest probability that you will be available.
Fun fact: based on a true story, while the jury was planning their first meeting!

Greedy Solution

To avoid having to check all combinations, only check all combinations of d days.
For every combination of d days:

- For every hour, count the number of cells with ' \quad.
- Sort this list and select the h hours with the most open timeslots.
- Calculate the number of free timeslots, take the maximum, and divide by d. h.

Statistics: 150 submissions, 118 accepted, 12 unknown

L: Lateral Damage

Problem Author: Paul Wild

Problem

Play Battleships with a 100×100 grid where you need to sink up to 10 aircraft carriers in at most 2500 shots, and your opponent is potentially cheating (adaptive).

L: Lateral Damage

Problem Author: Paul Wild

Problem

Play Battleships with a 100×100 grid where you need to sink up to 10 aircraft carriers in at most 2500 shots, and your opponent is potentially cheating (adaptive).

Observation

Shooting every fifth position in a straight line prevents your opponent from placing ships in between them.

L: Lateral Damage

Problem Author: Paul Wild

Problem

Play Battleships with a 100×100 grid where you need to sink up to 10 aircraft carriers in at most 2500 shots, and your opponent is potentially cheating (adaptive).

Observation

Shooting every fifth position in a straight line prevents your opponent from placing ships in between them.

Solution

- Generalizing this observation over two dimensions: shoot every position on every fifth diagonal line.
- For every hit, shoot the four positions left, right, above, and below to sink the full ship.

L: Lateral Damage

Problem Author: Paul Wild

Problem

Play Battleships with a 100×100 grid where you need to sink up to 10 aircraft carriers in at most 2500 shots, and your opponent is potentially cheating (adaptive).

Observation

Shooting every fifth position in a straight line prevents your opponent from placing ships in between them.

Solution

- Generalizing this observation over two dimensions: shoot every position on every fifth diagonal line.
- For every hit, shoot the four positions left, right, above, and below to sink the full ship.

H: Higher Arithmetic

Problem Author: Paul Wild

Problem

Print a valid arithmetic expression using,$+ *$, (, and) and all given numbers exactly once such that the value is maximal.

H: Higher Arithmetic

Problem Author: Paul Wild

Problem

Print a valid arithmetic expression using,$+ *$, (, and) and all given numbers exactly once such that the value is maximal.

Solution

- Idea: A maximal expression always is the product of sums.

H: Higher Arithmetic

Problem Author: Paul Wild

Problem

Print a valid arithmetic expression using,$+ *$, (, and) and all given numbers exactly once such that the value is maximal.

Solution

- Idea: A maximal expression always is the product of sums.
- All numbers are >1 : Multiply all numbers.

H: Higher Arithmetic

Problem Author: Paul Wild

Problem

Print a valid arithmetic expression using,$+ *$, (, and) and all given numbers exactly once such that the value is maximal.

Solution

- Idea: A maximal expression always is the product of sums.
- All numbers are >1 : Multiply all numbers.
- With 1 s and 2 s , some numbers need to be combined into sums.

H: Higher Arithmetic

Problem Author: Paul Wild

Problem

Print a valid arithmetic expression using,$+ *$, (, and) and all given numbers exactly once such that the value is maximal.

Solution

- Idea: A maximal expression always is the product of sums.
- All numbers are >1 : Multiply all numbers.
- With 1 s and 2 s , some numbers need to be combined into sums.

Cases:

H: Higher Arithmetic

Problem Author: Paul Wild

Problem

Print a valid arithmetic expression using,$+ *$, (, and) and all given numbers exactly once such that the value is maximal.

Solution

- Idea: A maximal expression always is the product of sums.
- All numbers are >1 : Multiply all numbers.
- With 1 s and 2 s , some numbers need to be combined into sums.

Cases:

- Only one 1: Add to second smallest number.

H: Higher Arithmetic

Problem Author: Paul Wild

Problem

Print a valid arithmetic expression using +, *, (, and) and all given numbers exactly once such that the value is maximal.

Solution

- Idea: A maximal expression always is the product of sums.
- All numbers are >1 : Multiply all numbers.
- With 1 s and 2 s , some numbers need to be combined into sums.

Cases:

- Only one 1: Add to second smallest number.
- No 2s: Repeatedly combine three 1s.

H: Higher Arithmetic

Problem Author: Paul Wild

Problem

Print a valid arithmetic expression using +, *, (, and) and all given numbers exactly once such that the value is maximal.

Solution

- Idea: A maximal expression always is the product of sums.
- All numbers are >1 : Multiply all numbers.
- With 1 s and 2 s , some numbers need to be combined into sums.

Cases:

- Only one 1: Add to second smallest number.
- No 2s: Repeatedly combine three 1s.
- Special case: If two 1 s or four 1 s , combine two 1 s .

H: Higher Arithmetic

Problem Author: Paul Wild

Problem

Print a valid arithmetic expression using +, *, (, and) and all given numbers exactly once such that the value is maximal.

Solution

- Idea: A maximal expression always is the product of sums.
- All numbers are >1 : Multiply all numbers.
- With 1 s and 2 s , some numbers need to be combined into sums.

Cases:

- Only one 1: Add to second smallest number.
- No 2s: Repeatedly combine three 1s.
- Special case: If two 1 s or four 1s, combine two 1 s .
- At least one 1 and one 2: Repeatedly combine one 1 and one 2 .

H: Higher Arithmetic

Problem Author: Paul Wild

Problem

Print a valid arithmetic expression using +, *, (, and) and all given numbers exactly once such that the value is maximal.

Solution

- Idea: A maximal expression always is the product of sums.
- All numbers are >1 : Multiply all numbers.
- With 1 s and 2 s , some numbers need to be combined into sums.

Cases:

- Only one 1: Add to second smallest number.
- No 2s: Repeatedly combine three 1s.
- Special case: If two 1 s or four 1 s , combine two 1 s .
- At least one 1 and one 2: Repeatedly combine one 1 and one 2 .
- Special case: If two 1 s and one 2 , combine those.

H: Higher Arithmetic

Problem Author: Paul Wild

Problem

Print a valid arithmetic expression using +, *, (, and) and all given numbers exactly once such that the value is maximal.

Solution

- Idea: A maximal expression always is the product of sums.
- All numbers are >1 : Multiply all numbers.
- With 1 s and 2 s , some numbers need to be combined into sums.

Cases:

- Only one 1: Add to second smallest number.
- No 2s: Repeatedly combine three 1s.
- Special case: If two 1 s or four 1s, combine two 1 s .
- At least one 1 and one 2: Repeatedly combine one 1 and one 2 .
- Special case: If two 1 s and one 2 , combine those.

Statistics: 467 submissions, 67 accepted, 119 unknown

A: Arranging Adapters

Problem Author: Michael Zündorf

Problem

Given $1 \leq n \leq 2 \cdot 10^{5}$ chargers, each $3 \leq w \leq 10^{9} \mathrm{~cm}$ wide, how many fit into a powerstrip comprising a row of $1 \leq s \leq 10^{5}$ sockets, each of width 3 cm ?

A: Arranging Adapters

Problem Author: Michael Zündorf

Problem

Given $1 \leq n \leq 2 \cdot 10^{5}$ chargers, each $3 \leq w \leq 10^{9} \mathrm{~cm}$ wide, how many fit into a powerstrip comprising a row of $1 \leq s \leq 10^{5}$ sockets, each of width 3 cm ?

Solution

- First, greedily put the two largest chargers on the outside.

A: Arranging Adapters

Problem Author: Michael Zündorf

Problem

Given $1 \leq n \leq 2 \cdot 10^{5}$ chargers, each $3 \leq w \leq 10^{9} \mathrm{~cm}$ wide, how many fit into a powerstrip comprising a row of $1 \leq s \leq 10^{5}$ sockets, each of width 3 cm ?

Solution

- First, greedily put the two largest chargers on the outside.
- If the answer is k, we can use the k smallest chargers.

A: Arranging Adapters

Problem Author: Michael Zündorf

Problem

Given $1 \leq n \leq 2 \cdot 10^{5}$ chargers, each $3 \leq w \leq 10^{9} \mathrm{~cm}$ wide, how many fit into a powerstrip comprising a row of $1 \leq s \leq 10^{5}$ sockets, each of width 3 cm ?

Solution

- First, greedily put the two largest chargers on the outside.
- If the answer is k, we can use the k smallest chargers.
- To test if the smallest k chargers fit:
- Start with those of length $0 \bmod 3$.
- Then pair up $1 \bmod 3$ and $2 \bmod 3$ chargers, filling the gaps.
- Then pair up remaining $1 \bmod 3$, leaving a gap of 1 in between.
- Lastly put the remaining chargers, and check the total length used.

A: Arranging Adapters

Problem Author: Michael Zündorf

Problem

Given $1 \leq n \leq 2 \cdot 10^{5}$ chargers, each $3 \leq w \leq 10^{9} \mathrm{~cm}$ wide, how many fit into a powerstrip comprising a row of $1 \leq s \leq 10^{5}$ sockets, each of width 3 cm ?

Solution

- First, greedily put the two largest chargers on the outside.
- If the answer is k, we can use the k smallest chargers.
- To test if the smallest k chargers fit:
- Start with those of length $0 \bmod 3$.
- Then pair up $1 \bmod 3$ and $2 \bmod 3$ chargers, filling the gaps.
- Then pair up remaining $1 \bmod 3$, leaving a gap of 1 in between.
- Lastly put the remaining chargers, and check the total length used.
- Binary search over k. Runtime $\mathcal{O}(n \log n)$.

A: Arranging Adapters

Problem Author: Michael Zündorf

Problem

Given $1 \leq n \leq 2 \cdot 10^{5}$ chargers, each $3 \leq w \leq 10^{9} \mathrm{~cm}$ wide, how many fit into a powerstrip comprising a row of $1 \leq s \leq 10^{5}$ sockets, each of width 3 cm ?

Solution

- First, greedily put the two largest chargers on the outside.
- If the answer is k, we can use the k smallest chargers.
- To test if the smallest k chargers fit:
- Start with those of length $0 \bmod 3$.
- Then pair up $1 \bmod 3$ and $2 \bmod 3$ chargers, filling the gaps.
- Then pair up remaining $1 \bmod 3$, leaving a gap of 1 in between.
- Lastly put the remaining chargers, and check the total length used.
- Binary search over k. Runtime $\mathcal{O}(n \log n)$.
- Edge case: when there is only a single socket.

A: Arranging Adapters

Problem

Given $1 \leq n \leq 2 \cdot 10^{5}$ chargers, each $3 \leq w \leq 10^{9} \mathrm{~cm}$ wide, how many fit into a powerstrip comprising a row of $1 \leq s \leq 10^{5}$ sockets, each of width 3 cm ?

Solution

- First, greedily put the two largest chargers on the outside.
- If the answer is k, we can use the k smallest chargers.
- To test if the smallest k chargers fit:
- Start with those of length $0 \bmod 3$.
- Then pair up $1 \bmod 3$ and $2 \bmod 3$ chargers, filling the gaps.
- Then pair up remaining $1 \bmod 3$, leaving a gap of 1 in between.
- Lastly put the remaining chargers, and check the total length used.
- Binary search over k. Runtime $\mathcal{O}(n \log n)$.
- Edge case: when there is only a single socket.
- Linear time is also possible, trying to add one charger at a time.

A: Arranging Adapters

Problem Author: Michael Zündorf

Problem

Given $1 \leq n \leq 2 \cdot 10^{5}$ chargers, each $3 \leq w \leq 10^{9} \mathrm{~cm}$ wide, how many fit into a powerstrip comprising a row of $1 \leq s \leq 10^{5}$ sockets, each of width 3 cm ?

Solution

- First, greedily put the two largest chargers on the outside.
- If the answer is k, we can use the k smallest chargers.
- To test if the smallest k chargers fit:
- Start with those of length $0 \bmod 3$.
- Then pair up $1 \bmod 3$ and $2 \bmod 3$ chargers, filling the gaps.
- Then pair up remaining $1 \bmod 3$, leaving a gap of 1 in between.
- Lastly put the remaining chargers, and check the total length used.
- Binary search over k. Runtime $\mathcal{O}(n \log n)$.
- Edge case: when there is only a single socket.
- Linear time is also possible, trying to add one charger at a time.

Statistics: 333 submissions, 59 accepted, 110 unknown

F: Fixing Fractions

Problem Author: Michael Zündorf

Problem

Given a fraction $\frac{a}{b}$, try to make it equal to $\frac{c}{d}$ by cancelling some digits in a and b

F: Fixing Fractions

Problem Author: Michael Zündorf

Problem

Given a fraction $\frac{a}{b}$, try to make it equal to $\frac{c}{d}$ by cancelling some digits in a and b

Solution

- Try all possible $\mathcal{O}\left(2^{|a|}\right)$ subsets of a
- Given a^{\prime}, c and d, we know $b^{\prime}=\frac{a^{\prime} \cdot d}{c}$ must hold
- Check if b can be made into b^{\prime} by removing the same digits

F: Fixing Fractions

Problem Author: Michael Zündorf

Problem

Given a fraction $\frac{a}{b}$, try to make it equal to $\frac{c}{d}$ by cancelling some digits in a and b

Solution

- Try all possible $\mathcal{O}\left(2^{|a|}\right)$ subsets of a
- Given a^{\prime}, c and d, we know $b^{\prime}=\frac{a^{\prime} \cdot d}{c}$ must hold
- Check if b can be made into b^{\prime} by removing the same digits

Pitfalls

- $a^{\prime} \cdot d$ not divisible by c
- Leading zeroes
- 64-bit integer overflow: take GCD first, do operations modulo some prime, use bigger integers

F: Fixing Fractions

Problem Author: Michael Zündorf

Problem

Given a fraction $\frac{a}{b}$, try to make it equal to $\frac{c}{d}$ by cancelling some digits in a and b

Solution

- Try all possible $\mathcal{O}\left(2^{|a|}\right)$ subsets of a
- Given a^{\prime}, c and d, we know $b^{\prime}=\frac{a^{\prime} \cdot d}{c}$ must hold
- Check if b can be made into b^{\prime} by removing the same digits

Pitfalls

- $a^{\prime} \cdot d$ not divisible by c
- Leading zeroes
- 64-bit integer overflow: take GCD first, do operations modulo some prime, use bigger integers

Statistics: 347 submissions, 51 accepted, 125 unknown

Problem Author: Paul Wild

Problem

Find the optimal grid angle to make a tour through $n \leq 12$ points.

J: Jogging Tour

Problem Author: Paul Wild

Problem

Find the optimal grid angle to make a tour through $n \leq 12$ points.
Subtask: assume we know the angle

- All possible $\mathcal{O}(n!)$ routes, too slow!
- DP with (current location, locations still todo)
- This runs in $\mathcal{O}\left(n^{2} \cdot 2^{n}\right)$

J: Jogging Tour

Problem Author: Paul Wild

Problem

Find the optimal grid angle to make a tour through $n \leq 12$ points.
Subtask: assume we know the angle

- All possible $\mathcal{O}(n!)$ routes, too slow!
- DP with (current location, locations still todo)
- This runs in $\mathcal{O}\left(n^{2} \cdot 2^{n}\right)$

Complete solution

- Insight: in the optimal solution, there is a straight line between two consecutive locations
- Consider all n^{2} angles between pairs of locations
- Total complexity $\mathcal{O}\left(n^{4} \cdot 2^{n}\right)$

J: Jogging Tour

Problem Author: Paul Wild

Problem

Find the optimal grid angle to make a tour through $n \leq 12$ points.
Subtask: assume we know the angle

- All possible $\mathcal{O}(n!)$ routes, too slow!
- DP with (current location, locations still todo)
- This runs in $\mathcal{O}\left(n^{2} \cdot 2^{n}\right)$

Complete solution

- Insight: in the optimal solution, there is a straight line between two consecutive locations
- Consider all n^{2} angles between pairs of locations
- Total complexity $\mathcal{O}\left(n^{4} \cdot 2^{n}\right)$

Statistics: 72 submissions, 25 accepted, 44 unknown

J: Jogging Tour

C: Chair Dance

Problem Author: Michael Zündorf

Problem

Given are $n \leq 10^{5}$ players playing a deterministic version of musical chairs. Player i starts on chair i. Apply up to 10^{5} commands:

- Rotate by $+r$: the person on chair i moves clockwise to chair $i+r$.
- Multiply by $* m$, the person on chair i moves to $i \cdot m$, where the person walking the least gets it.
- On ?q, print who sits on chair q.

C: Chair Dance

Problem Author: Michael Zündorf

Problem

Given are $n \leq 10^{5}$ players playing a deterministic version of musical chairs. Player i starts on chair i. Apply up to 10^{5} commands:

- Rotate by $+r$: the person on chair i moves clockwise to chair $i+r$.
- Multiply by $* m$, the person on chair i moves to $i \cdot m$, where the person walking the least gets it.
- On ?q, print who sits on chair q.

Naive solution

Store who sits on each chair, and apply each command. $\mathcal{O}\left(n^{2}\right)$

C: Chair Dance

Problem Author: Michael Zündorf

Solution

Be lazy! Initialize $p[i]=i$, the person on chair i.

- Instead of rotating by $+r$, increment the total rotation $R . p[i]$ is now at $i+R$, so query $p[q-R]$.

C: Chair Dance

Problem Author: Michael Zündorf

Solution

Be lazy! Initialize $p[i]=i$, the person on chair i.

- Instead of rotating by $+r$, increment the total rotation R. $p[i]$ is now at $i+R$, so query $p[q-R]$.
- For collision-free multiplications: store total multiplication M, so $p[i]$ is now at $M \cdot i+R$. When multiplying by m, update $M \leftarrow m \cdot M$ and $R \leftarrow m \cdot R$. Query $p\left[(q-R) \cdot M^{-1}\right]$.

C: Chair Dance

Problem Author: Michael Zündorf

Solution

Be lazy! Initialize $p[i]=i$, the person on chair i.

- Instead of rotating by $+r$, increment the total rotation R. $p[i]$ is now at $i+R$, so query $p[q-R]$.
- For collision-free multiplications: store total multiplication M, so $p[i]$ is now at $M \cdot i+R$. When multiplying by m, update $M \leftarrow m \cdot M$ and $R \leftarrow m \cdot R$. Query $p\left[(q-R) \cdot M^{-1}\right]$.
- Collisions occur when $\operatorname{gcd}(m, k)>1$ ($k=\#$ leftover people). Simulate these fully, set $k \leftarrow k / \operatorname{gcd}(m, k)$, and reset R and M.

C: Chair Dance

Problem Author: Michael Zündorf

Solution

Be lazy! Initialize $p[i]=i$, the person on chair i.

- Instead of rotating by $+r$, increment the total rotation R. $p[i]$ is now at $i+R$, so query $p[q-R]$.
- For collision-free multiplications: store total multiplication M, so $p[i]$ is now at $M \cdot i+R$. When multiplying by m, update $M \leftarrow m \cdot M$ and $R \leftarrow m \cdot R$. Query $p\left[(q-R) \cdot M^{-1}\right]$.
- Collisions occur when $\operatorname{gcd}(m, k)>1$ ($k=$ \#leftover people). Simulate these fully, set $k \leftarrow k / \operatorname{gcd}(m, k)$, and reset R and M.
- Be careful about queries to empty chairs.

C: Chair Dance

Problem Author: Michael Zündorf

Solution

Be lazy! Initialize $p[i]=i$, the person on chair i.

- Instead of rotating by $+r$, increment the total rotation R. $p[i]$ is now at $i+R$, so query $p[q-R]$.
- For collision-free multiplications: store total multiplication M, so $p[i]$ is now at $M \cdot i+R$. When multiplying by m, update $M \leftarrow m \cdot M$ and $R \leftarrow m \cdot R$. Query $p\left[(q-R) \cdot M^{-1}\right]$.
- Collisions occur when $\operatorname{gcd}(m, k)>1$ ($k=$ \#leftover people). Simulate these fully, set $k \leftarrow k / \operatorname{gcd}(m, k)$, and reset R and M.
- Be careful about queries to empty chairs.
- Each collision at least halves k, so at most $\lg n$ collisions.

C: Chair Dance

Problem Author: Michael Zündorf

Solution

Be lazy! Initialize $p[i]=i$, the person on chair i.

- Instead of rotating by $+r$, increment the total rotation R. $p[i]$ is now at $i+R$, so query $p[q-R]$.
- For collision-free multiplications: store total multiplication M, so $p[i]$ is now at $M \cdot i+R$. When multiplying by m, update $M \leftarrow m \cdot M$ and $R \leftarrow m \cdot R$. Query $p\left[(q-R) \cdot M^{-1}\right]$.
- Collisions occur when $\operatorname{gcd}(m, k)>1$ ($k=$ \#leftover people). Simulate these fully, set $k \leftarrow k / \operatorname{gcd}(m, k)$, and reset R and M.
- Be careful about queries to empty chairs.
- Each collision at least halves k, so at most $\lg n$ collisions.
- Runtime: $\mathcal{O}(n \log n)$.

C: Chair Dance

Problem Author: Michael Zündorf

Solution

Be lazy! Initialize $p[i]=i$, the person on chair i.

- Instead of rotating by $+r$, increment the total rotation R. $p[i]$ is now at $i+R$, so query $p[q-R]$.
- For collision-free multiplications: store total multiplication M, so $p[i]$ is now at $M \cdot i+R$. When multiplying by m, update $M \leftarrow m \cdot M$ and $R \leftarrow m \cdot R$. Query $p\left[(q-R) \cdot M^{-1}\right]$.
- Collisions occur when $\operatorname{gcd}(m, k)>1$ ($k=$ \#leftover people). Simulate these fully, set $k \leftarrow k / \operatorname{gcd}(m, k)$, and reset R and M.
- Be careful about queries to empty chairs.
- Each collision at least halves k, so at most $\lg n$ collisions.
- Runtime: $\mathcal{O}(n \log n)$.

Statistics: 77 submissions, 5 accepted, 60 unknown

E: Exponentiation

Problem Author: Reinier Schmiermann

Problem

There are n variables $x_{1}, x_{2}, \ldots, x_{n}$, initially set to 2023. You are given m queries that either assigns x_{i} to $x_{i}^{x_{j}}$, or asks you to compare x_{i} and x_{j}.

E: Exponentiation

Problem Author: Reinier Schmiermann

Problem

There are n variables $x_{1}, x_{2}, \ldots, x_{n}$, initially set to 2023. You are given m queries that either assigns x_{i} to $x_{i}^{x_{j}}$, or asks you to compare x_{i} and x_{j}.

Observation

- To make the numbers slightly less huge, take the logarithm twice. Let $y_{i}=\log \log \left(x_{i}\right)$.

E: Exponentiation

Problem Author: Reinier Schmiermann

Problem

There are n variables $x_{1}, x_{2}, \ldots, x_{n}$, initially set to 2023. You are given m queries that either assigns x_{i} to $x_{i}^{x_{j}}$, or asks you to compare x_{i} and x_{j}.

Observation

- To make the numbers slightly less huge, take the logarithm twice. Let $y_{i}=\log \log \left(x_{i}\right)$.
- $x_{i}=x_{i}^{x_{j}} \Longleftrightarrow y_{i}=y_{i}+2023^{y_{j}}$.

E: Exponentiation

Problem Author: Reinier Schmiermann

Problem

There are n variables $x_{1}, x_{2}, \ldots, x_{n}$, initially set to 2023. You are given m queries that either assigns x_{i} to $x_{i}^{x_{j}}$, or asks you to compare x_{i} and x_{j}.

Observation

- To make the numbers slightly less huge, take the logarithm twice. Let $y_{i}=\log \log \left(x_{i}\right)$.
- $x_{i}=x_{i}^{x_{j}} \Longleftrightarrow y_{i}=y_{i}+2023^{y_{j}}$.
- Consider these numbers in base 2023. Each operation, one of the digits will increase by one. But no carry will ever happen since there are fewer than 2023 operations.

E: Exponentiation

Problem Author: Reinier Schmiermann

Problem

There are n variables $x_{1}, x_{2}, \ldots, x_{n}$, initially set to 2023. You are given m queries that either assigns x_{i} to $x_{i}^{x_{j}}$, or asks you to compare x_{i} and x_{j}.

Observation

- To make the numbers slightly less huge, take the logarithm twice. Let $y_{i}=\log \log \left(x_{i}\right)$.
- $x_{i}=x_{i}^{x_{j}} \Longleftrightarrow y_{i}=y_{i}+2023^{y_{j}}$.
- Consider these numbers in base 2023. Each operation, one of the digits will increase by one. But no carry will ever happen since there are fewer than 2023 operations.
- When a variable gets updated, it is much easier to create a new variable $y^{\prime}=y_{i}+2023^{y_{j}}$.

E: Exponentiation

Problem Author: Reinier Schmiermann

Solution

- Keep all variables ordered by size at all times. Answering queries becomes easy. But how to maintain the order?

E: Exponentiation

Problem Author: Reinier Schmiermann

Solution

- Keep all variables ordered by size at all times. Answering queries becomes easy. But how to maintain the order?
- For every variable y, let $d(y)$ be a list containing the positions of its non-zero digits (in base 2023). These positions will be other variables, that we know the order of. Two variables can be compared by lexicographically comparing their lists.

E: Exponentiation

Problem Author: Reinier Schmiermann

Solution

- Keep all variables ordered by size at all times. Answering queries becomes easy. But how to maintain the order?
- For every variable y, let $d(y)$ be a list containing the positions of its non-zero digits (in base 2023). These positions will be other variables, that we know the order of. Two variables can be compared by lexicographically comparing their lists.
- When a new variable $y^{\prime}=y_{i}+2023^{y_{j}}$ is created, let $d\left(y^{\prime}\right)=d\left(y_{i}\right) \cup\left\{y_{j}\right\}$. Insert this new variable y^{\prime} into the ordering.

E: Exponentiation

Problem Author: Reinier Schmiermann

Solution

- Keep all variables ordered by size at all times. Answering queries becomes easy. But how to maintain the order?
- For every variable y, let $d(y)$ be a list containing the positions of its non-zero digits (in base 2023). These positions will be other variables, that we know the order of. Two variables can be compared by lexicographically comparing their lists.
- When a new variable $y^{\prime}=y_{i}+2023^{y_{j}}$ is created, let $d\left(y^{\prime}\right)=d\left(y_{i}\right) \cup\left\{y_{j}\right\}$. Insert this new variable y^{\prime} into the ordering.
- To keep track of the order of variables, a trie or a sorted list can be used. This can be done in $\mathcal{O}\left(n^{2}\right)$ or $\mathcal{O}\left(n^{2} \log (n)\right)$.

E: Exponentiation

Problem Author: Reinier Schmiermann

Solution

- Keep all variables ordered by size at all times. Answering queries becomes easy. But how to maintain the order?
- For every variable y, let $d(y)$ be a list containing the positions of its non-zero digits (in base 2023). These positions will be other variables, that we know the order of. Two variables can be compared by lexicographically comparing their lists.
- When a new variable $y^{\prime}=y_{i}+2023^{y_{j}}$ is created, let $d\left(y^{\prime}\right)=d\left(y_{i}\right) \cup\left\{y_{j}\right\}$. Insert this new variable y^{\prime} into the ordering.
- To keep track of the order of variables, a trie or a sorted list can be used. This can be done in $\mathcal{O}\left(n^{2}\right)$ or $\mathcal{O}\left(n^{2} \log (n)\right)$.
- Challenge: Can you solve the problem faster than quadratic time?

E: Exponentiation

Problem Author: Reinier Schmiermann

Solution

- Keep all variables ordered by size at all times. Answering queries becomes easy. But how to maintain the order?
- For every variable y, let $d(y)$ be a list containing the positions of its non-zero digits (in base 2023). These positions will be other variables, that we know the order of. Two variables can be compared by lexicographically comparing their lists.
- When a new variable $y^{\prime}=y_{i}+2023^{y_{j}}$ is created, let $d\left(y^{\prime}\right)=d\left(y_{i}\right) \cup\left\{y_{j}\right\}$. Insert this new variable y^{\prime} into the ordering.
- To keep track of the order of variables, a trie or a sorted list can be used. This can be done in $\mathcal{O}\left(n^{2}\right)$ or $\mathcal{O}\left(n^{2} \log (n)\right)$.
- Challenge: Can you solve the problem faster than quadratic time?

Statistics: 74 submissions, 5 accepted, 38 unknown

G: Galaxy Quest

Problem Author: Mike de Vries

Problem

You are given a graph consisting of line segments in 3D space. You travel on a ship with constant acceleration and constant fuel consumption for the time spent accelerating. You need to come to a standstill at each vertex. Given a target location and a time limit, find the minimum amount of fuel needed to get there. You need to answer multiple queries, all from the same starting location.

G: Galaxy Quest

Problem Author: Mike de Vries

Solution for fixed path

- Consider a path consisting of multiple line segments.

G: Galaxy Quest

Problem Author: Mike de Vries

Solution for fixed path

- Consider a path consisting of multiple line segments.
- Suppose the i th segment is d_{i} metres long and we accelerate/decelerate for x_{i} seconds along it.
- Then it takes $x_{i}+\frac{d_{i}}{x_{i}}$ seconds to traverse the i th segment.
- New problem: minimize $\sum 2 x_{i}$ subject to $\sum x_{i}+\frac{d_{i}}{x_{i}} \leq t$.
- Key insight: optimum is reached when $x_{i}=c \cdot \sqrt{d_{i}}$ for some constant c.
- We can compute c by solving $c+\frac{1}{c}=t / \sum \sqrt{d_{i}}$. When the RHS is <2, no solution exists.

G: Galaxy Quest

Problem Author: Mike de Vries

Solution for fixed path

- Consider a path consisting of multiple line segments.
- Suppose the i th segment is d_{i} metres long and we accelerate/decelerate for x_{i} seconds along it.
- Then it takes $x_{i}+\frac{d_{i}}{x_{i}}$ seconds to traverse the i th segment.
- New problem: minimize $\sum 2 x_{i}$ subject to $\sum x_{i}+\frac{d_{i}}{x_{i}} \leq t$.
- Key insight: optimum is reached when $x_{i}=c \cdot \sqrt{d_{i}}$ for some constant c.
- We can compute c by solving $c+\frac{1}{c}=t / \sum \sqrt{d_{i}}$. When the RHS is <2, no solution exists.

Solution

- To keep the time limit and save fuel, find a path that minimizes $\sum \sqrt{d_{i}}$.

G: Galaxy Quest

Problem Author: Mike de Vries

Solution for fixed path

- Consider a path consisting of multiple line segments.
- Suppose the i th segment is d_{i} metres long and we accelerate/decelerate for x_{i} seconds along it.
- Then it takes $x_{i}+\frac{d_{i}}{x_{i}}$ seconds to traverse the i th segment.
- New problem: minimize $\sum 2 x_{i}$ subject to $\sum x_{i}+\frac{d_{i}}{x_{i}} \leq t$.
- Key insight: optimum is reached when $x_{i}=c \cdot \sqrt{d_{i}}$ for some constant c.
- We can compute c by solving $c+\frac{1}{c}=t / \sum \sqrt{d_{i}}$. When the RHS is <2, no solution exists.

Solution

- To keep the time limit and save fuel, find a path that minimizes $\sum \sqrt{d_{i}}$.
- Use Dijkstra's algorithm for this, where edges have length $\sqrt{d_{i}}$.

G: Galaxy Quest

Problem Author: Mike de Vries

Solution for fixed path

- Consider a path consisting of multiple line segments.
- Suppose the i th segment is d_{i} metres long and we accelerate/decelerate for x_{i} seconds along it.
- Then it takes $x_{i}+\frac{d_{i}}{x_{i}}$ seconds to traverse the i th segment.
- New problem: minimize $\sum 2 x_{i}$ subject to $\sum x_{i}+\frac{d_{i}}{x_{i}} \leq t$.
- Key insight: optimum is reached when $x_{i}=c \cdot \sqrt{d_{i}}$ for some constant c.
- We can compute c by solving $c+\frac{1}{c}=t / \sum \sqrt{d}$. When the RHS is <2, no solution exists.

Solution

- To keep the time limit and save fuel, find a path that minimizes $\sum \sqrt{d_{i}}$.
- Use Dijkstra's algorithm for this, where edges have length $\sqrt{d_{i}}$.
- The starting location is fixed, so queries can be answered in constant time.

Solution for fixed path

- Consider a path consisting of multiple line segments.
- Suppose the i th segment is d_{i} metres long and we accelerate/decelerate for x_{i} seconds along it.
- Then it takes $x_{i}+\frac{d_{i}}{x_{i}}$ seconds to traverse the i th segment.
- New problem: minimize $\sum 2 x_{i}$ subject to $\sum x_{i}+\frac{d_{i}}{x_{i}} \leq t$.
- Key insight: optimum is reached when $x_{i}=c \cdot \sqrt{d_{i}}$ for some constant c.
- We can compute c by solving $c+\frac{1}{c}=t / \sum \sqrt{d_{i}}$. When the RHS is <2, no solution exists.

Solution

- To keep the time limit and save fuel, find a path that minimizes $\sum \sqrt{d_{i}}$.
- Use Dijkstra's algorithm for this, where edges have length $\sqrt{d_{i}}$.
- The starting location is fixed, so queries can be answered in constant time.

Statistics: 12 submissions, 1 accepted, 9 unknown

B: Brickwork

Problem Author: Michael Zündorf

Problem

Given n types of bricks b_{1}, \ldots, b_{n}, can you build a wall of width w where no two gaps appear above each other?

Problem Author: Michael Zündorf

Subtask

Can at least one row be built?

B: Brickwork

Problem Author: Michael Zündorf

Subtask

Can at least one row be built?

Solution

This is known as the coin change problem and can be solved like this:

- $\mathcal{O}\left(\frac{w^{2}}{64}\right)$ with $\mathrm{dp}+$ bitsets
- $\mathcal{O}\left(w \log (w)^{2}\right)$ with fft (faster is possible)

B: Brickwork

Problem Author: Michael Zündorf

Subtask

Can at least one row be built?

Solution

This is known as the coin change problem and can be solved like this:

- $\mathcal{O}\left(\frac{w^{2}}{64}\right)$ with $\mathrm{dp}+$ bitsets
- $\mathcal{O}\left(w \log (w)^{2}\right)$ with $\mathrm{fft} \quad$ (faster is possible)
- Bitsets are much faster

B: Brickwork

Problem Author: Michael Zündorf

Case 1

- $w \in\left\{b_{1}, \ldots, b_{n}\right\}$

B: Brickwork

Problem Author: Michael Zündorf

Case 1

- $w \in\left\{b_{1}, \ldots, b_{n}\right\}$

Case 2

- There is a row that uses two bricks b_{x}, b_{y}

B: Brickwork

Problem Author: Michael Zündorf

Case 1

- $w \in\left\{b_{1}, \ldots, b_{n}\right\}$
\square

Case 2

- There is a row that uses two bricks b_{x}, b_{y}
- WLOG:
- Let b_{x} be the shortest
- Let b_{y} be the second shortest
- there are as few b_{x} as possible (still at least one)

B: Brickwork

Problem Author: Michael Zündorf

Case 1

- $w \in\left\{b_{1}, \ldots, b_{n}\right\}$

Case 2.1

- Sum of b_{x} can be replace by some b_{y}

Case 2

- There is a row that uses two bricks b_{x}, b_{y}
- WLOG:
- Let b_{x} be the shortest
- Let b_{y} be the second shortest
- there are as few b_{x} as possible (still at least one)

Case 2.1

- $w \in\left\{b_{1}, \ldots, b_{n}\right\}$

Case 2

- There is a row that uses two bricks b_{x}, b_{y}
- WLOG:
- Let b_{x} be the shortest
- Let b_{y} be the second shortest
- there are as few b_{x} as possible (still at least one)

Problem Author: Michael Zündorf

Case 3

- There are two bricks b_{x}, b_{y} that divide w

B: Brickwork

Problem Author: Michael Zündorf

Case 3

- There are two bricks b_{x}, b_{y} that divide w
- Case 2 implies that $\operatorname{Icm}\left(b_{x}, b_{y}\right)=w$

Problem Author: Michael Zündorf

Case 3

- There are two bricks b_{x}, b_{y} that divide w
- Case 2 implies that $\operatorname{Icm}\left(b_{x}, b_{y}\right)=w$

Case 4

- Impossible

Conclusion

The solution exists in two cases:

- Trivial: $w \in\left\{b_{1}, \ldots, b_{n}\right\}$
- There exist two bricks that both can be part of a solution

B: Brickwork

Problem Author: Michael Zündorf

Case 3

- There are two bricks b_{x}, b_{y} that divide w
- Case 2 implies that $\operatorname{Icm}\left(b_{x}, b_{y}\right)=w$

Case 4

- Impossible

Conclusion

The solution exists in two cases:

- Trivial: $w \in\left\{b_{1}, \ldots, b_{n}\right\}$
- There exist two bricks that both can be part of a solution

Statistics: 14 submissions, 0 accepted, 11 unknown

Problem Author: Michael Zündorf

Problem

Given $2 n$ points, is there a point that occurs an odd number of times?

Problem Author: Michael Zündorf

Problem

Given $2 n$ points, is there a point that occurs an odd number of times?

Solutions

- Sort the points, check whether point $2 i-1$ equals point $2 i$ in $\mathcal{O}(n \log n)$
- XOR hashes of all points in $\mathcal{O}(n)$

I: Isolated Island

Problem Author: Michael Zündorf

Problem

Given $n \leq 1000$ line segments that partition the plane in small regions. Are there two regions the same distance from the ocean?

Problem Author: Michael Zündorf

Problem

Given $n \leq 1000$ line segments that partition the plane in small regions. Are there two regions the same distance from the ocean?

Geometry solution

Find all intersections and construct the dual graph on faces:
Costs $\mathcal{O}\left(n^{2} \log n\right)$ and your sanity (256 lines of $C++$).

Problem Author: Michael Zündorf

Problem

Given $n \leq 1000$ line segments that partition the plane in small regions. Are there two regions the same distance from the ocean?

Intended solution

- Consider the dual graph, with one vertex per region.

Problem Author: Michael Zündorf

Problem

Given $n \leq 1000$ line segments that partition the plane in small regions. Are there two regions the same distance from the ocean?

Intended solution

- Consider the dual graph, with one vertex per region.
- The answer is yes if there are adjacent regions with equal distance to the ocean.

Problem Author: Michael Zündorf

Problem

Given $n \leq 1000$ line segments that partition the plane in small regions. Are there two regions the same distance from the ocean?

Intended solution

- Consider the dual graph, with one vertex per region.
- The answer is yes if there are adjacent regions with equal distance to the ocean.
- The difference between adjacent distances is at most 1 , so we can work modulo 2 instead.

Problem Author: Michael Zündorf

Problem

Given $n \leq 1000$ line segments that partition the plane in small regions. Are there two regions the same distance from the ocean?

Intended solution

- Consider the dual graph, with one vertex per region.
- The answer is yes if there are adjacent regions with equal distance to the ocean.
- The difference between adjacent distances is at most 1 , so we can work modulo 2 instead.
- The answer is no iff all pairs of adjacent faces
 have opposite values.

Problem Author: Michael Zündorf

Problem

Given $n \leq 1000$ line segments that partition the plane in small regions. Are there two regions the same distance from the ocean?

Intended solution

- The answer is no iff all pairs of adjacent faces have opposite values.

Problem Author: Michael Zündorf

Problem

Given $n \leq 1000$ line segments that partition the plane in small regions. Are there two regions the same distance from the ocean?

Intended solution

- The answer is no iff all pairs of adjacent faces have opposite values.
- I.e.: the dual graph must be bipartite.

Problem Author: Michael Zündorf

Problem

Given $n \leq 1000$ line segments that partition the plane in small regions. Are there two regions the same distance from the ocean?

Intended solution

- The answer is no iff all pairs of adjacent faces have opposite values.
- I.e.: the dual graph must be bipartite.
- That's true iff in each intersection point an even number of lines meet.

Problem Author: Michael Zündorf

Problem

Given $n \leq 1000$ line segments that partition the plane in small regions. Are there two regions the same distance from the ocean?

Intended solution

- The answer is no iff all pairs of adjacent faces have opposite values.
- I.e.: the dual graph must be bipartite.
- That's true iff in each intersection point an even number of lines meet.
- Solution: check if each segment endpoint appears an even number of times in the input.

Problem Author: Michael Zündorf

Problem

Given $n \leq 1000$ line segments that partition the plane in small regions. Are there two regions the same distance from the ocean?

Intended solution

- The answer is no iff all pairs of adjacent faces have opposite values.
- I.e.: the dual graph must be bipartite.
- That's true iff in each intersection point an even number of lines meet.
- Solution: check if each segment endpoint appears an even number of times in the input.

Statistics: 25 submissions, 0 accepted, 21 unknown

I: Isolated Island
Problem Author: Michael Zündorf

Language stats

Random facts

Jury work

- 723 commits (including test session) (last year: 720)

Random facts

Jury work

- 723 commits (including test session) (last year: 720)
- 1148 secret test cases (last year: 1424) ($95 \frac{2}{3}$ per problem!)

Random facts

Jury work

- 723 commits (including test session) (last year: 720)
- 1148 secret test cases (last year: 1424) ($95 \frac{2}{3}$ per problem!)
- 284 jury solutions (last year: 239)

Random facts

Jury work

- 723 commits (including test session) (last year: 720)
- 1148 secret test cases (last year: 1424) ($95 \frac{2}{3}$ per problem!)
- 284 jury solutions (last year: 239)
- The minimum number of lines the jury needed to solve all problems is ${ }^{1}$

$$
18+83+41+3+43+23+32+21+1+29+17+5=316
$$

On average 26.3 lines per problem, up from 13.6 last year

[^0][galaxyquest] don't look at this commit
Mees de Vries authored 18 hours ago

Our final commits

[galaxyquest] FINAL CASES TO BREAK QUADRATIC DIJKSTRA

Ragnar Groot Koerkamp authored 16 hours ago
[galaxyquest] don't look at this commit
Mees de Vries authored 18 hours ago
© c721987d 回

Our final commits

[galaxyquest] ok one more

Ragnar Groot Koerkamp authored 16 hours ago
[galaxyquest] FINAL CASES TO BREAK QUADRATIC DIJKSTRA
Ragnar Groot Koerkamp authored 16 hours ago
[galaxyquest] don't look at this commit
Mees de Vries authored 18 hours ago
(*) b82e64f2 回
(v) de41502d b

- c721987d 虎

[^0]: ${ }^{1}$ But last year, we did more code golfing

